Exponentially Accurate Hamiltonian Embeddings of Symplectic A-stable Runge–kutta Methods for Hamiltonian Semilinear Evolution Equations
نویسنده
چکیده
We prove that a class of A-stable symplectic Runge–Kutta time semidiscretizations (including the Gauss–Legendre methods) applied to a class of semilinear Hamiltonian PDEs which are well-posed on spaces of analytic functions with analytic initial data can be embedded into a modified Hamiltonian flow up to an exponentially small error. As a consequence, such timesemidiscretizations conserve the modified Hamiltonian up to an exponentially small error. The modified Hamiltonian is O(hp)-close to the original energy where p is the order of the method and h the time step-size. Examples of such systems are the semilinear wave equation or the nonlinear Schrödinger equation with analytic nonlinearity and periodic boundary conditions. Standard Hamiltonian interpolation results do not apply here because of the occurrence of unbounded operators in the construction of the modified vector field. This loss of regularity in the construction can be taken care of by projecting the PDE to a subspace where the operators occurring in the evolution equation are bounded and by coupling the number of excited modes as well as the number of terms in the expansion of the modified vector field with the step size. This way we obtain exponential estimates of the form O(exp(−c/h1/(1+q))) with c > 0 and q ≥ 0; for the semilinear wave equation, q = 1, and for the nonlinear Schrödinger equation, q = 2. We give an example which shows that analyticity of the initial data is necessary to obtain exponential estimates.
منابع مشابه
Symplectic and symmetric methods for the numerical solution of some mathematical models of celestial objects
In the last years, the theory of numerical methods for system of non-stiff and stiff ordinary differential equations has reached a certain maturity. So, there are many excellent codes which are based on Runge–Kutta methods, linear multistep methods, Obreshkov methods, hybrid methods or general linear methods. Although these methods have good accuracy and desirable stability properties such as A...
متن کاملPartitioned Runge-kutta Methods for Separable Hamiltonian Problems
Separable Hamiltonian systems of differential equations have the form dp/dt = -dH/dq, dq/dt = dH/dp, with a Hamiltonian function H that satisfies H = T(p) + K(q) (T and V are respectively the kinetic and potential energies). We study the integration of these systems by means of partitioned Runge-Kutta methods, i.e., by means of methods where different Runge-Kutta tableaux are used for the p and...
متن کاملMulti-symplectic Runge–Kutta-type methods for Hamiltonian wave equations
The non-linear wave equation is taken as a model problem for the investigation. Different multisymplectic reformulations of the equation are discussed. Multi-symplectic Runge–Kutta methods and multi-symplectic partitioned Runge–Kutta methods are explored based on these different reformulations. Some popular and efficient multi-symplectic schemes are collected and constructed. Stability analyses...
متن کاملMulti-Symplectic Runge-Kutta Collocation Methods for Hamiltonian Wave Equations
A number of conservative PDEs, like various wave equations, allow for a multi-symplectic formulation which can be viewed as a generalization of the symplectic structure of Hamiltonian ODEs. We show that Gauss-Legendre collocation in space and time leads to multi-symplectic integrators, i.e., to numerical methods that preserve a symplectic conservation law similar to the conservation of symplect...
متن کاملDiscretization and Weak Invariants
We consider the preservation of weak solution invariants in the time integration of ordinary diier-ential equations (ODEs). Recent research has concentrated on obtaining symplectic discretizations of Hamiltonian systems and schemes that preserve certain rst integrals (i.e. strong invariants). In this article, we examine the connection between constrained systems and ODEs with weak invariants fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015